
Enterprise Identifiers for Global Naming Across the C4I-Simulation Boundary

Sam Chamberlain
U.S. Army Research Laboratory

ATTN: AMSRL-CI-C
Aberdeen Proving Ground, MD 21005-5066

410-278-8948

wildman@arl.army.mil
http://www.arl.army.mil/~wildman

Keywords:
Enterprise Identifiers, Default Operational Organizations

ABSTRACT: In any information system, a critical feature is the ability to link together disparate pieces of data and
information via relationships. One way to greatly facilitate this task is to provide a common technique for identifying
the pieces so that they can be conveniently referenced. This can be accomplished by standardizing one field across
disparate data sources. Perhaps no simpler enhancement can produce such a huge benefit with as little intrusion into
legacy systems. This is the objective of enterprise identifiers. If data can be globally identified using a common
scheme, then one can spontaneously “plug and play” disparate, arbitrary pieces of information without prior
coordination.

1. Model-Based Battle Command

Model-based battle command [1] refers to the notion that
battle command information must be maintained in a form
conducive to machine manipulation if one is to truly
automate its processes. In other words, one must model
the battlefield to achieve true automation [2]. This
implies that the tasks of doing battle command and that of
simulating battle command should ultimately be united:

Battle command system developers have traditionally
included modeling and simulation (M&S) as a major
element of their acquisition strategy (in fact, it is now
mandated). But it is interesting and bothersome that
battle command is viewed so differently between the
system development and M&S communities. A major
disparity exists between the way we do battle
command and the way we model battle command.
Although numerous research programs have produced
a diverse set of battle command models and
simulations, they are still relegated to a role of support
and study rather than being considered as part of the
actual system. Under a model-based paradigm of
battle command, the system development and M&S
communities unite so that using automated tools to do
battle command is merely simulating battle command

with real-time, real-world data. Simply stated, from
an automation perspective: modeling battle command
should differ little from actually “doing” battle
command.1

In a model-based battle command scheme, the model, and
its container, the database2, become the center (rather than
just a supporting resource) of the design and
implementation of the automated portion of the battle
command system. Any element of a force, down to a
single warrior, may maintain its own copy of the
battlefield model in its local computing environment. This
is now possible because of the amazing computational
power and storage capacity available in small packages.

This allows the database to serve as the conduit, or hub,
by which information is transferred between different
units (i.e., nodes) and often, between the applications
within the same unit; see Figure 1. Currently, abstractions
are manifested by a variety of “information models” (also
called data models) that may be defined using formal

1 From [1], page 31.
2 The term “database” is used as a general concept and

does not imply a single, monolithic entity.

mailto:Wildman@arl.army.mil
http://www.arl.army.mil/~wildman

representations conducive to database implementations.
Common examples are IDEF1X [3] for relational models
and UML for object-oriented models [4].3

The information in the model is stored in an abstract form
conducive to machine manipulation rather than in a form
suitable for direct human assimilation. However, human-
oriented information, such as text, images, digitized audio,
or graphic icons can be easily attached to the abstractions.
But it is the abstractions that form the backbone of the
battle command information infrastructure. Users rarely
(if ever) directly access the data; instead, they rely on
sophisticated, specifically tailored application programs,
that in turn, access the database (or model). Thus, the
user is completely unaware that an abstract data model
exists or that transactions have occurred. From the data
structures, it should not be evident whether the
information is real or simulated.

Among information systems, whether a C4ISR system or a
simulation, a critical feature is the ability to link together
disparate pieces of data and information via relationships.
One way to greatly facilitate this task is to provide a
common technique for identifying the pieces so that they
can be conveniently referenced. Standardizing one field
across disparate databases, and then including that field in
all data objects or entities can accomplish this. Perhaps
no simpler enhancement can produce such a huge benefit
with as little intrusion into legacy systems. This is the
objective of enterprise identifiers. If data can be globally
identified using a common scheme, then one can
spontaneously “plug and play” disparate, arbitrary pieces
of information without prior coordination.

3 IDEF1X: ICAM (Integrated Computer Aided

Manufacturing) Definition 1 – Extended.
UML: Unified Modeling Language

2. Enterprise Identifiers (EID).

An identifier is a property that identifies something.
Different techniques may be used to accomplish the task
of identification, but regardless of the technology, there
must be some way to identify and reference data stored in
computers. Databases are commonly used to store data
and they may be based on one of several models. The two
most common models are the relational and object-
oriented models that identify items using primary keys
(PK) and object identifiers (OID), respectively. A major
accomplishment towards interoperability would be the
acceptance of a common identification scheme that spans
both of these data storage technologies.

In the relational model, data is stored in tables with
attributes (i.e., columns) and the rows of a table may
represents an entity or a relationship between entities.
Every row of a table must be uniquely identifiable. A
candidate key is a set of attributes that accomplishes this
task. There may be several candidate keys for a table, and
one of these is selected as the PK for the table. A
property of this approach is that a PK may be composed
of several attributes. Further, these attributes may be
imported from other tables, they may contain codes or
symbols that provide insight into the properties of the item
they identify, and the PK may be different for every table.
Although these characteristics may be viewed as
“features” by some designers, they introduce significant
inertia and complexity when one attempts to modify or
share PKs across disparate databases. This is referred to
as the “foreign key ripple effect” in [5].

To alleviate some of these problems, the concept of
surrogate keys was introduced [6],[7],[8]. A surrogate
key (SK) is a PK that is composed of a single attribute
with no intelligence built into it. This means that it can
not be imported from another table and that nothing can
be inferred from the SK about the item it identifies.
However, a SK only needs to be unique within a single
table. The same SK may exist in numerous tables (e.g., a
common approach is to number rows from 1 to N in every
table).

Enterprise keys expand upon this concept. An enterprise
key (EK) is a surrogate key that is unique across all tables
of the enterprise [9]. Therefore, if the enterprise were the
Army, then every row of every table of every database
would be uniquely identified via an EK. This is a
powerful property when the challenging task of
integration is pursued.

An enterprise identifier (EID) is the generic version of an
EK. A goal is to develop a scheme that is independent of

Figure 1: The Battlefield Model is the Core
of the Automation Process

DATA
ABSTRACTIONS

APPLICATION
PROGRAMS

APPLICATION
PROGRAMS

CONVERT TO
DATA

ABSTRACTIONS

MODEL MODEL

any database technology. An EID is special because it
uniquely identifies an entity or object across the entire
enterprise, not just within a specific domain or type of
database. Similarly, if two data items have the same EID,
then they must be semantically equivalent, that is, they
must represent the same thing. This allows different
formalisms to be used to represent identical items. It does
not matter if the item is represented as a row in a
relational database (with an EK) or as an object (with an
Object ID); if two items have the same EID, then they are
semantic equivalents.

The two primary challenges to accomplish an EID
implementation are (1) the development of a flexible EID
allocation scheme that can be as distributed or centralized
as desired, and (2) reaching agreement on a common
structure usable by any database technology. These issues
will be addressed in a later section.

3. Default Operational Organizations

3.1 Stationary Data

Data may be categorized based upon its perishability.
Reference data is static data. Examples are lookup table
entries for state, airport, or country codes. At the other
extreme is dynamic data. As its name implies, it is
constantly changing and must be updated frequently to
remain synchronized. Situational awareness (SA) data is
in this category. The third category lies between these
two extremes. Stationary data is information that is
“semi-static,” meaning that it is relatively invariant over
its lifetime so that it can be reasonably maintained in a
shared reference library. An example of stationary data is
phone numbers. Although thousands of phone numbers
are added, deleted, and changed daily worldwide, it is not
a frequent event for a person's phone number to change.
Usually, a person's phone number is static for the duration
of their tour of duty. Therefore, phone numbers can be
reasonably maintained in a reference library called a
phonebook that is only distributed once per year. The
small subset of new, changed, and deleted phone numbers
are handled via other means (i.e., directory assistance).

Several C4ISR4 oriented data models (DM), related to the
C2 Core DM5, include battlefield entities in five basic
domains: organization, materiel, personnel, facility, and

4 C4ISR: Command, Control, Communications,

Computers, Intelligence, Surveillance, and
Reconnaissance.

5 Command & Control (C2) Core Data Model:
http://www-datadmn.itsi.disa.mil/ddm.html

features. These five domains contain large amounts of
information that can be considered stationary. This means
that the data can reside in common reference libraries
(e.g., provided via servers) that can be periodically
downloaded into one’s computers; see Figure 2. By
rigorously controlling the update process of the stationary
data, users can be confident that they have a consistent set
of reference material preloaded into their computers. If
EIDs are used to provide a common naming scheme
across the reference libraries (i.e., for both the reference
and stationary data), then the common data will include a
common set of EIDs. This allows users to exchange the
terse EIDs instead of the bulky data and can significantly
reduce bandwidth requirements for passing C4ISR
information.

However, for reference and stationary data to be
consistent, a proponent for the data must be identified to
rigorously control the creation, maintenance, and deletion
of the data. A reasonable practice is to select the agencies
that already maintain the data as part of their charter. For
example, every service has a force structure development
community that handles a wide variety of force structure
documents. These agencies should be the owners of the
stationary and reference data for organizations. The
Defense Logistics Agency (DLA) already maintains the
FEDLOG catalog via its Defense Logistics Information
Service (DLIS)6. This should be the authoritative source
for materiel related data that has national stock numbers.
Although the lines of ownership are rarely perfectly clear
for stationary data, it is important that authoritative
sources be identified, sanctioned, and funded to provide a
consistent product.

6 See http://www.dlis.dla.mil/govord.htm for

information.

Figure 2: Suite of Servers that
Contain Stationary Data

DOD Reference Library

Stationary Data is Preloaded into a Database, then
the Defaults can be Re-linked and Augmented

Via Digital Operations Plans and Orders

Force Structure
Organization Servers

Logistics

Materiel Servers

Personnel

Warrior Servers

Infra-
structure

Facility Servers

Terrain

Feature Servers

A

B

Army Navy USAF Etc

C

. . .

3.2 Organization Data as Tree Graphs

The concept of default operational organizations (DOO)
is introduced in [10] and is based upon three fundamental
tenets. First, the concept of force structure lies at the
heart of the representation of battle command. Second, a
default force structure exists that is composed of a set of
default organizations that are linked together with a
default command structure (DCS). This force structure is
relatively stable (i.e., it is stationary data) and if designed
properly (i.e., is richly populated), then it can be used as
the base structure for integrating entities and building
arbitrary orders of battle. Third, operational command
structures (i.e., unit task organizations) are fluid, and are
nearly always constructed by modifying (i.e., re-linking
the nodes of) the default force structure.

Force structure can be formally represented using tree
graphs, often used for organization charts (org chart); see
Figure 3.7 The terms organization, command structure,
and unit are mapped to the formal definitions for node, a
set of links, and tree, respectively. In. other words, a unit
(U) is composed of a set of organizations (O) and a set of
links called a command structure (CS).8 The purpose of
the set of links in the DCS is to define aggregation (or
composition). One can interpret the set of links using the
phrase “is composed of,” e.g., “a ‘is composed of’ b, c,
and d.” Set E in Figure 3 could represent a DCS.

The concept of DOOs states that default org charts for
military units do indeed exist, but to be truly useful, they
must reflect the way a unit deploys or fights. In other
words, the structure must include all the nodes typically
used when the unit is deployed. Currently, force structure
documents are administrative in nature. In the Army,
these are called Tables of Organization and Equipment
(TOE), or Modified TOEs (MTOE). It is proposed that
the information in these documents be enhanced by
imposing a formal, hierarchical structure to it (i.e., making
it into a tree graph), beginning from some arbitrary root
node, say the Department of the Army, and extending
down to the individual warrior level, commonly called a
billet. However, to be truly useful, the structure must
include the nodes that are used on a daily basis for
operations, such as teams, sections, elements, and squads.
Currently, these organizations are normally defined in

7 Recall that a graph G(V,E) is composed of a set of

vertices (or nodes) v and a set of edges (or links) e. A
tree is a connected graph with no cycles, meaning that
all its nodes are connected to at least one other node,
and only one path exists between any two nodes.

8 U(O,CS) is mapped to G(V,E).

Field Manuals that describe tactics, techniques and
procedures. Therefore, an objective is to evolve the force
structure documents from an administrative purpose to
one that is operational in nature.

To transition to a formal, consistent, hierarchical
representation of force structure, semantics must be
developed. Some recommended semantics follow.

(A) A node may be a member of several command
structures simultaneously.

(B) Internal nodes are aggregation points, and therefore,
should have multiple children. There are two type of
internal nodes that correspond to two motives for
aggregation:

i. Crew Organizations that provide a 1:1
correspondence with a piece of equipment
requiring operation by one or more billets.

ii. Doctrinal Organizations that provide an arbitrary
aggregation point due to doctrine, tactics,
techniques, or procedures

(C) Personnel positions (“billets”) are nodes just like
other organizations. They are always leaf nodes (i.e.,
they can not be internal nodes), but the reverse is not
strictly so. (Note: people are assigned to billets, but
are not billets.)

Figure 3: A Tree Graph with 5 Nodes

Graph G = (V,E)

V = { a, b, c, d, e, f }
E = { (a,b), (a,c), (a,d), (c,e), (c,f) }

b c d

a

Terminal
Node

e f

LINK

NODE

Non-Terminal
Node

Root Node

(D) Internal nodes can be active (in use) or dormant, but
an active internal node must have a designated leader
(i.e., a reference to a billet).

The result of applying these and other rules is the
development of a consistent force structure tree whose
links describe the aggregation (or composition) of three
types of nodes: doctrinal organizations, crews, and billets.
The default command structure presents the organic, or
“at rest” perspective of the tree. However, numerous
other links may be added to provide more sophisticated
relationships between organizations and other entities.
The options are limitless.

If the doctrinal and crew organizations are correctly and
fully populated, then (ideally), any order of battle may be
configured by simply rearranging the existing set of
organizations without creating any new ones. New links
may have to be created, but no new nodes (i.e.,
organizations). The set of organizations that meet this
requirement is called the set of DOOs, or just DOOs; Set
V in Figure 3 could be a DOO. To reiterate, the objective
is to produce a set of organizations (i.e., nodes), from
which numerous command structures can be applied to
meet the requirements of any mission without having to
create more aggregation points. One command structure
is selected as the default, but this in no way limits the
number of command structures that can be created to meet
mission needs.

4. Organization Identifiers

Given that a default force structure exists, it is now simple
to enumerate the DOOs (or nodes of the tree). When a
new organization is created by the force development
community, it is assigned an identifier that stays with the
organization for its life (i.e., until is it disestablished).
This identifier is called an organization identifier, or
simply Org-ID. This allows the default force structure
(tree) to be represented via a set of organizations, each
with an Org-ID (stored in an organization table), and a set
of default links (stored in an organization-association
table) that connects every organization with a default
parent, except, of course, for the root node that has no
parent. This structure can be maintained in a database,
called the organization server (or org server) which is
populated and maintained by the force development
community. This server becomes the authoritative source
of current force structure data for the organizations that it
includes. Org-IDs are EIDs, and therefore, are unique
across the whole enterprise. Anyone who downloads all
or part of the force structure tree will receive the same set
of DOOs with their DCS.

A debatable question is how large should an Org-ID be?
The objective is to make it big enough so that it doesn’t
repeat for a long time, yet keep it small enough to
maintain performance and minimize bandwidth overheads.
The current choice is 32 bits. This allows 4.3 billion
organizations to be labeled provided that they are not
wasted. This is enough for over 200,000 Army divisions9.

A two-tiered approach for allocating Org-IDs has been
implemented that is composed of organization servers that
maintain the force structure data, and Org-ID servers that
allocate Org-IDs; see Figure 4. When a force structure

developer creates a new organization in an org server, the
org server must request one or more Org-IDs from an
Org-ID server. Org-ID servers pass out Org-IDs on a
first-come, first-served basis to prevent waste. There are
no reasons to pre-allocate blocks of Org-IDs because they
are simply identifiers.10 An important feature is that Org-
ID servers do not contain any force structure data. All
that is maintained in an Org-ID server is the identity of the
org server to which an Org-ID was given, and whether the
Org-ID has been activated. This design allows any
organization, service, or country to participate in the
process without having to share its force structure data.
The owner of an org server maintains complete
sovereignty over its force structure data.

9 For an analysis, see [10], Appendix B.
10 In contrast to IP addresses or phone numbers that infer

hierarchical routing information.

Figure 4: Two Tier Architecture for Servers

A

Army . . .Navy USAF Etc

B

CConsistency

Org-ID Request Return Org-ID(s)

Organization Servers
(Contain Force Structure Data)

Org-ID Servers
(Pass Out Numbers)

It must be emphasized that organization template data,
such as TOEs, do not receive Org-IDs. Technically, this
information resides in the organization-type domain and is
tagged with organization-type-ids. The details of these
tags will be covered in the discussion of ad hoc
organizations.

5. An EID Server Architecture

As previously mentioned, a primary challenge in creating
an EID allocation system is developing an approach to
guarantee that EIDs are unique while ensuring that they
can be easily obtained. Whenever a database management
system creates a piece of data (e.g., inserts a row into a
table), it must obtain a globally unique EID to tag the
data. This must be accomplished rapidly because
significant delay is unacceptable. Further, all EIDs must
have the same structure and be sized to be large enough to
handle the vast number of required cases without being
excessively large to cause performance degradation or a
communications burden on C4ISR systems.

Note that Org-IDs are EIDs, and therefore, they can be
used to implement a more expansive EID scheme across
an enterprise. Concatenating a second unique value to an
Org-ID also produces a value that is unique across the
enterprise, that is, another EID. Consider a technique
where any official organization (i.e., one with an Org-ID)
is allowed to produce larger EIDs by concatenating a
locally selected value to its Org-ID. If the organization is
careful never to repeat the locally selected value, the
concatenated values will also be EIDs. Therefore, a
standard EID structure, to be used for all data
identification purposes, can be defined as a 64 bit
identifier composed of a 32 bit Org-ID followed by
another 32 bit integer selected and controlled locally. In
other words, a common, 64-bit EID data structure can be
defined for use by any database for any type of data. This
would allow 18 billion billion different identifiers to be
created; see Figure 5.

A computer program that provides EIDs is called an EID
server. Any official organization may operate an EID
server and control who may use it. It doesn't matter
whether the EID is used for an actual command and
control system or a simulation. The result is that any
piece of data can be uniquely identified and referenced
across arbitrary systems without previous coordination.

The elegance of this approach is its flexibility. Consider
some extreme cases. Theoretically, there could be one big
EID server run by the Department of Defense. Every
organization in the enterprise would be forced to obtain
EIDs from this server; see Figure 6. At the other extreme,

there could be 4.3 billion EID servers, one for each
possible organization and it could be limited to serve only
one organization; see Figure 7. Of course, the real answer
will be in the middle of these extremes. Each organization
controls its EID servers based upon local policy decisions.

Figure 5: Org-ID Based Expansive EID

Figure 6: Extreme One - Centralize Control

Figure 7: Extreme Two - Decentralized Control

So … a second (four byte) number that is created and controlled by the EID
server (that provides another 4.29 billion unique entities) can be combined
with the Org-ID to provide a new, bigger unique number.

An enterprise identifier to uniquely identify any item in any database can be
composed by combining unique identifiers.

.1 3232.1

First, a four byte (32 bit long) “organizational identifier,” or Org-ID, is provided
that supports 232, or 4.29 billion (i.e., 4.29 X 109), unique organizations.

An EID server obtains its identity from the organization it represents.

Thus, a common enterprise identifier structure of eight bytes (64 bits) allows 264

bit patterns = 18.45 X 1018, or 18.45 Exa-identifiers, or 18 Billion Billion Unique
Entities to be tracked (4.3 billion tags for 4.3 billion potential EID servers).

64 Bits (8 Bytes) EID

32 Bit (4 Byte) Org-ID 32 Bit (4 Byte) Local Value

Users 1 - 7 in Organizations B, C, and D
Each Have Their Own EID Server and Their Own DBMS

Users 1 - 7 in Organizations B, C, and D
Each Have Their Own EID Server and Their Own DBMS

A

DB

654321 7

C

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

DBMS

EID
SVR

A

D

B

6

5

4

3

2

1

7

C

Users 1 - 7 in
Organizations B, C, & D All Use One
Centralized DBMS and EID Server

Users 1 - 7 in
Organizations B, C, & D All Use One
Centralized DBMS and EID Server

When an official organization decides to establish an EID
server using its Org-ID, it also determines who will be
allowed to access it. In the simplest case, it can provide a
single user EID service. This would be the preferred
approach for isolated systems, such as those with
individual warriors (e.g., forward observers or special
operations teams). Single user EID servers can be very
simple and simply allocate increasing values. Multi-user
EID servers can be as complex as desired. They can track
to whom EIDs are allocated just like an Org-ID server.
They can also require the requesting database to provide
detailed information before they allocate the EID. For
example, data insertions require an EID so this technique
could be used to control the creation of data across a wide
variety of distributed systems. The extent of centralized
or decentralized control is completely flexible and can be
adjusted at any time; see Figure 8.

6. Ad Hoc Organizations

So far, only official organizations that are created by bona
fide force developers with Org-ID assignment
authorization have been discussed. However, when
required, anyone may be allowed to create unofficial, or
ad hoc, organizations. Of course, dissemination of ad hoc
organization information is completely the responsibility
of the creating organization.

Ad hoc organizations are completely interchangeable with
official organizations. They can be associated with any
other entity or object that an official organization may be
associated. One can track ad hoc and official
organizations using all the same applications. The only
restriction on ad hoc organizations is that they may not be
used to establish EID servers. In other words, one can
not insert new data under the auspices of an ad hoc
organization. Only official organizations can sponsor the
creation of data (via their EID servers).

This is consistent with the EID definition. Under this
proposal, all data is identified using a 64 bit EID.
However, recall that Org-IDs are only 32 bits long. It is
awkward to have organizations tagged with different sized
EIDs from every other type of data. Therefore, when
entered into a database, Org-ID would be cast into
standard sized, 64 bit Org-EIDs by simply concatenating a
predefined 32 bit value to them11. This makes all EIDs
the same structure. EIDs for ad hoc organization are not
created this way. Like any other piece of data, they must
obtain an EID from an EID server before they can be
inserted into a database12. Consequently, official
organizations can be identified by their unique EID suffix,
although this is strongly discouraged. However, it should
be clear that an ad hoc organization requires all 64 bits to
be identified, and therefore, can not be used as a prefix for
64 bit EIDs. This prevents data from being inserted under
the sponsorship of ad hoc organizations; see.Figure 9.

Enemy organizations are ad hoc organizations. This is
because the enemy has decided not to participate in the
Org-ID process. Therefore, enemy organizations are
perceptions and are entered using EIDs obtained from the
EID servers of those who are authorized to enter enemy
order of battle data (i.e., the intelligence community).

Recall that organization-types (org-types) are the
templates from which organizations (orgs) are
instantiated. Org-types are used to represent TOE/MTOE
data. Org-types get EIDs just like any other non-
organization entity or object. They receive their EIDs

11 An obvious choice is 32 zeros. For the Joint Common

Database, the value 1 was chosen.
12 This means that an EID server can not use the value

selected as the predefined 32 bit suffix. This reducing
the number of available EIDs by one
(i.e., to 4.3 billion – 1) for each EID server.

Figure 8: EID Server Access is
Determined by Owner Figure 9: Org-EIDs Versus Org-IDs

DBMS EID
SVR

EID
SVR

EID
SVR

Onboard

Local

Remote

Org-ID:
613245536

Org-ID:
914432436

Org-ID:
7799142

All Other EIDs, to include
 Ad Hoc Organizations and Enemy Organizations:

000000000000000000000000 0000000032.1

Organization EID (versus Org-ID):

64 Bit (8 Bytes) Org-EID

32 Bit (4 Byte) Org-ID 32 Bit (4 Byte) All Zeros

.1 3232.1

64 Bit (8 Byte) EID

32 Bit (4 Byte) Org-ID 32 Bit (4 Byte) Local Value (Not 0)

from the EID servers of the organizations authorized to
create force structure data (i.e., from the force
development community). From an EID perspective, it is
important to understand the distinction between official
organizations, ad hoc organizations, and org-types. Only
official organizations receive Org-IDs (32 bit) from the
Org-ID servers, the others receive standard EIDs (64 bits
that are created from Org-IDs) just like any other entity.

Anyone may create ad hoc organizations, and the
simulation community is expected to be a primary
exploiter of this feature. Technically, it is perfectly
permissible to make a copy of a friendly or enemy
organization-type or organization hierarchy and apply
one’s own EIDs to differentiate it from the original data.
Once the EIDs are changed, the data becomes independent
from the original data and is under the control of the
organization that created it (i.e., applied the new EIDs).
The new organizations are no longer official. They
become ad hoc organizations and can be modified to meet
the needs of their creator, to include deleting or adding
other ad hoc organizations. Clearly, this principle can be
easily applied to all entities. This is exactly what the
simulation community requires: access to stationary data
that can be easily modified to meet its own needs without
infringing on the sovereignty of the original data owners.

7. Summary

This paper presented four points. First, whether in a
C4ISR system or a simulation, one of the most
fundamental tasks is the unique identification of data
items and components. Providing a common
identification method is imperative for maintaining
integrity within and across both C4ISR systems and
simulations. Second, enterprise identifiers (EID) are one
approach to providing unique values across disparate
systems. EIDs have a common structure and are unique
across the enterprise. Third, a primary requirement for a
successful EID allocation system is that it is flexible, and
when required, completely distributed; it can not produce
bottlenecks nor can it be the source of delay. Fourth, to
accomplish these characteristics, a suite of EID servers
can be implemented that are based upon the concept of
default operational organizations (DOO). DOOs are the
nodes of a default force structure hierarchy maintained by
the force development community. Each DOO is assigned
an organization identifier (Org-ID) that is also unique
across the enterprise and exists for the lifetime of the
organization. Finally, there are large amounts of
information that are stable enough to be maintained in
reference libraries. This information may be static
(reference data) or semi-static (stationary data).
Reference material can be assigned common EIDs, but to
maintain consistency, proponents for the information must
be identified to control its content.

These characteristics are independent of whether the
information is used for real world or simulation purposes.
This is transparent to the users. The common theme is
that all the pieces of information are uniquely identified
using a common scheme allowing one to find, reference,
and retrieve information regardless of the rest of its
format. The remaining format information can be easily
obtained with syntactic languages, such as XML13.
Together, these standards allow one to spontaneously
“plug and play” disparate, arbitrary pieces of information
without prior coordination.

13 XML: The Extensible Mark-up Language, a standard

for describing the structure of information; see
http://www.w3.org/XML/.

8. References

[1] S. Chamberlain: “Model-Based Battle Command: A
Paradigm Whose Time Has Come” Proceedings of
the First International Symposium on Command and
Control Research and Technology, pp 31-38,
National Defense University; 19-22 Jun 1995.
http://www.arl.army.mil/~wildman/PAPERS/tr2172.h
tml

[2] M. Boller, “Common Understanding for
Transformation Brigades,” Military Review, Sep-Oct
2000. http://www-
cgsc.army.mil/milrev/English/SepOct00/boller.htm

[3] T. A. Bruce. “Designing Quality Databases with
IDEF1X Information Models.” Dorset House
Publishing, New York, NY, 1992.

[4] G. Booch, I. Jacobson, J. Raubaugh. OMG Unified
Modeling Language Specification (Version 1.3,
March 2000).
http://www.omg.org/technology/documents/formal/o
mg_modeling_specifications_avai.htm.

[5] T. Johnston: “Primary Key Reengineering Projects:
The Problem;” DM Review, February, 2000,
http://www.dmreview.com/master.cfm?NavID=
55&EdID=1866.

[6] E.F. Codd: “Extending the Relational Model to
Capture More Meaning,'” ACM Transactions on
Database Systems, Vol 4(4), Dec 1979.

[7] C.J. Date: “Relational Databases: Selected
Writings,” Addison-Wesley, Reading, MA, 1986.

[8] M. Lonigro, Mike: “The Case for the Surrogate
Key”, Intelligent Enterprise Database Programming
and Design On-line, May 1998
 http//:www.dbpd.com/vault/9805xtra.htm.

[9] T. Johnston: “Primary Key Reengineering Projects:
The Solution;” DM Review, March, 2000,
http://www.dmreview.com/master.cfm?NavID=
55&EdID=2004

[10] S. Chamberlain: “Default Operational
Representations of Military Organizations,” Army
Research Laboratory Technical Report: ARL-TR-
2172; February 2000.
http://www.arl.army.mil/~wildman/PAPERS/tr2172.h
tml

Author Biographies

SAM CHAMBERLAIN is a computer scientist at the
U.S. Army Research Laboratory, Aberdeen Proving
Ground, Maryland where he has worked for the past 19
years. He has a Ph.D. in computer science from the
University of Delaware and a Ranger Tab from the U.S.
Army.

http://www.arl.army.mil/~wildman/PAPERS/tr2172.html
http://www.arl.army.mil/~wildman/PAPERS/tr2172.html
http://www-cgsc.army.mil/milrev/English/SepOct00/boller.htm
http://www-cgsc.army.mil/milrev/English/SepOct00/boller.htm
http://www.omg.org/technology/documents/formal/omg_modeling_specifications_avai.htm
http://www.omg.org/technology/documents/formal/omg_modeling_specifications_avai.htm
http://www.dmreview.com/master.cfm?NavID=55&EdID=1866
http://www.dmreview.com/master.cfm?NavID=55&EdID=1866
http://www.dbpd.com/vault/9805xtra.htm
http://www.dmreview.com/master.cfm?NavID=55&EdID=2004
http://www.dmreview.com/master.cfm?NavID=55&EdID=2004
http://www.arl.army.mil/~wildman/PAPERS/tr2172.html
http://www.arl.army.mil/~wildman/PAPERS/tr2172.html

	Model-Based Battle Command
	Enterprise Identifiers (EID).
	Default Operational Organizations
	Stationary Data
	Organization Data as Tree Graphs

	Organization Identifiers
	An EID Server Architecture
	Ad Hoc Organizations
	Summary
	References
	Author Biographies

